Radiographic Comparison of the Relation between Mandibular Third Molar Root and Inferior Alveolar Canal in Panoramic Radiography and Cone-Beam Computed Tomography

Z. Mohammadpour (DDS)¹, R. Foroughi (DDS, MS)², F. Abesi (DDS, MS)³, A. Bijani (MD, PhD)⁴, S. Haghanifar (DDS, MS)²

¹Student Research Committee, Babol University of Medical Sciences, Babol, I.R.Iran
²Oral Health Research Center, Institute of Health, Babol University of Medical Sciences, Babol, I.R.Iran
³Dental Materials Research Center, Institute of Health, Babol University of Medical Sciences, Babol, I.R.Iran
⁴Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran


ABSTRACT

BACKGROUND AND OBJECTIVE: There is a risk of damage to the inferior alveolar nerve when extracting third molars. A variety of common imaging modalities, such as panoramic radiography (PR) and cone-beam computed tomography (CBCT), are recommended for examination prior to mandibular third molar surgery. The aim of this study was to compare the findings of panoramic radiography and CBCT in evaluating the relation between the root of the mandibular third molar and the inferior alveolar canal.

METHODS: In this cross-sectional study, 75 panoramic and CBCT images were evaluated. Cases in panoramic radiography that were suspected of the relation between the root of the mandibular third molars and the inferior alveolar canal were collected. To determine the type of connection of apex and root canal, the samples were divided into 6 groups: normal, inferior alveolar canal path loss, canal path narrowing, sudden canal path change, radiolucent band over the roots, and root curvature. Cases in the panoramic radiograph that were suspected of root contact with the canal were examined by the CBCT in terms of the position of the canal relative to the tooth (buccal or lingual or middle of the root - upper or lower) and the type of connection (whether the tooth is connected to the canal).

FINDINGS: In panoramic findings, 23 cases (30.7%) were normal, 19 cases (25.3%) showed canal path loss, 9 cases (12%) canal path narrowing, 5 cases (6.7%) sudden canal path change, 3 cases (4%) radiolucent band over the roots and 16 cases (21.3%) showed root curvature. According to CBCT findings, the position of the canal relative to the root apex was lingual in 39 cases (52%) and there was connection between the mandibular canal and the third molar in 39 cases (78.7%). There was no significant relationship between panoramic radiographic and CBCT findings and only in two cases of specific radiolucent band over the roots, there was a complete agreement between panoramic and CBCT findings.

CONCLUSION: Based on the results of this study, if a radiolucent band is observed on the root of the mandibular molars or a sudden change is observed in the canal path, panoramic radiography can be used to detect the relation between the inferior alveolar canal and the root of the third molars.

KEY WORDS: Computed Tomography, Panoramic Radiography, Inferior Alveolar Canal, Third Molars.

Please cite this article as follows:
Introduction

Extraction of the third molar is a common procedure in maxillofacial surgery. There is the possibility of impaction for any permanent tooth, but the mandibular third molars are the most common impacted teeth (1-4). Extraction of impacted teeth, even for experienced surgeons, can be difficult or relatively simple and uncomplicated (5). One of the problems with mandibular third molars is the possibility of inferior alveolar nerve damage and sensory abnormalities following nerve damage. The prevalence of these injuries is reported to be between 0.6 and 5.3% and the rate of permanent damage is about 1% of all surgeries (6-8).

Imaging is undoubtedly an essential tool for recognizing and managing surgery because it provides valuable information about location, number and morphology of teeth root, especially the connection between these teeth with adjacent structures (9-11). This is necessary not only to facilitate tooth extraction but also to estimate and reduce the risk of inferior alveolar nerve damage (12-14). Once the location of the canal and the position of the impacted wisdom tooth are determined based on the radiograph, the surgeon can perform the surgical procedure more accurately and, if possible, change the surgical procedure to the direction where the least damage to the inferior alveolar nerve occurs (12). Various common imaging tools, such as panoramic radiography and Cone Beam Computed Tomography (CBCT), are recommended for preoperative examination of the mandibular third molars (15-17).

Panoramic imaging is often used as a primary assessment that can provide an overview or help determine the need for other types of imaging. Studies show that there are signs on panoramic radiographs that indicate the possibility of interference and connection of the root of the mandibular third molars with the inferior alveolar canal. These signs include loss of canal path, narrowing of the canal path, sudden change in the canal path, radiolucent band over the roots, and root curvature. However, the presence or absence of these radiographic signs does not always indicate the possibility of damage to the inferior alveolar nerve, showing that panoramic radiography does not have high diagnostic accuracy during mandibular third molar surgery (6).

Although the use of panoramic radiography has found a special place in the treatment of third molar surgery and due to its availability and low cost, radiography is highly preferred in third molar surgery. Nevertheless, due to failure to show bone thickness and because of having magnification and distortion, this technology has gradually been replaced by other technologies such as CT scan and CBCT, which can be used to view the patient's anatomy in 3D in different directions with minimum distortion (18).

Cone Beam Computed Tomography benefits from a number of applications in dentistry. Its advantages include high image clarity, reduced metal artifacts, a resolution of less than one millimeter, which makes it suitable for examining delicate structures, lower equipment costs, a lower radiation dose (one-fifteenth) and a shorter radiation time of about 10-70 seconds compared to CT imaging (9, 19).

Numerous studies have reported excellent measurement accuracy of CBCT images (17, 20, 21). Although one study found that there was no significant difference in the use of panoramic and CBCT in the assessment of possible inferior alveolar nerve injuries (15), other studies confirmed the superiority of CBCT in showing the anatomy of the area and the position of the canal, indicating a discrepancy between these studies (7, 22, 23). Therefore, the aim of the present study was to examine the findings of panoramic radiography and CBCT in evaluating the connection between the root of the mandibular third molars and the inferior alveolar canal.

Methods

This cross-sectional study was approved by the ethics committee of Babol University of Medical Sciences with the code IR.MUBABOL.HRI.REC.1397.238 and was performed in the form of a census among 70 samples (40 female patients and 30 male patients) and 50 patients who referred to private oral and maxillofacial radiology centers in Sari and Babol, Northern Iran from 2018 until 2020. Samples were selected based on simple random sampling.

Patients with mandibular third molar, no pathological lesion in the mandibular third molar area and having CBCT of the target area (including ramus, mandibular lower border and third molar area) were included in the study and if there was a history of bone diseases and lesions in the mandible, low-quality radiographs, and third molars with immature roots, the subject was excluded. Specifications of the devices used: Panoramic: (Soredex-Helsinki-Finland) Cranex 3D - (Soredex-Helsinki-Finland) Cranex Tome and CBCT: (Newton-Verona-Italy) Giano - (Acteon-Italy) X mind triumph.
All radiographs were examined by two observers (two oral and maxillofacial radiologists) with a Kappa coefficient of 70.7±0.06 for the connection between the root of the mandibular third molars and the inferior alveolar canal. The two observers recorded their comments separately and finally the comments were collected and reviewed. In cases where two observers disagreed, the case was re-evaluated. A checklist was used to record patient information. Patient’s gender, canal position, type of connection, and panoramic radiographic findings were recorded in the checklist. To determine the type of connection of apex of the third molars and the inferior alveolar canal in panoramic radiography, the samples were divided into 6 groups: normal, inferior alveolar canal path loss, canal path narrowing, sudden canal path change, root curvature, and radiolucent band over the roots in a way that the tooth is grooved by the dental canal or surrounds the canal (Figure 1). In order to examine the samples in CBCT, the findings were divided according to the position of the canal relative to the tooth (buccal or lingual or middle of the root - upper or lower) and the type of connection (whether the tooth is connected to the canal) (Figures 2 to 5). Data were analyzed using SPSS software version 17 by descriptive indices and Chi-square statistical analysis and p<0.05 was considered significant.

Figure 1. Panoramic radiographic signs

Figure 2. Inferior alveolar canal contact in proximity to the root
Figure 3. No contact with the inferior alveolar nerve

Figure 4. The buccal state of the canal relative to the root

Figure 5. The lingual state of the canal relative to the root
Results

Panoramic radiographic findings: The data were divided into 6 groups, of which 23 cases (30.7%) were normal, 19 cases (25.3%) showed canal path loss, 9 cases (12%) canal path narrowing, 5 cases (6.7%) sudden canal path change, 3 cases (4%) radiolucent band over the roots and 16 cases (21.3%) showed root curvature.

Positioning of the inferior alveolar canal relative to the root apex in CBCT: The canal position was lingual relative to the apex of the root in 39 cases (52%), buccal in 30 cases (40%), and in the middle of the root in 2 cases (8%). Furthermore, it was in the lower position in 74 cases (98.7%) and it was in the upper position in 1 case (1.3%) and the upper position was seen in the case of canal path loss. Dispersion of contact among 75 cases in CBCT radiography was as follows: 16 cases (21.3%) had no contact with the canal and teeth and 59 cases (78.7%) had contact (Table 1). There was no statistically significant relationship between the findings of panoramic radiography and CBCT (Table 2).

Discussion

According to the findings of this study, only cases such as observation of specific radiolucent band over the root and sudden change of path of the inferior alveolar canal on the root of the third molar in panoramic radiography have a significant relation with CBCT examinations and in other cases, CBCT is essential for surgery of mandibular third molars. Although the use of panoramic radiography has found a special place in the treatment of third molar surgery and has been used as the primary radiography in third molar surgery, the preference of using CBCT radiography over panoramic radiography in determining the connection between alveolar canal and tooth root is still under debate (18). The present study showed that there is no significant relationship between panoramic radiographic findings and CBCT and accurate evaluation of the mandibular canal with CBCT before invasive surgeries such as wisdom tooth surgery can help in accurate surgical planning. Ishak et al. concluded that the presence or absence of radiographic signs on panoramic radiographs does not accurately predict the connection between the mandibular third molar root and the mandibular canal, and in cases of overlap of root images with the canal in the patient's panoramic view, CBCT should be evaluated (24), which is consistent with the results of the present study. Moreover, Patel et al., as in the present study, acknowledged the superiority of CBCT over panoramic radiography in examining the connection between the root of the mandibular third molars and the inferior alveolar canal (25). In a systematic review, Del Lhano et al. showed that, unlike the present study, panoramic radiography and CBCT have similar ability to assess the reduction of temporary paresthesia of the inferior alveolar nerve after third molar surgery (26). Nasser et al. also reported that panoramic radiographic markers

Table 1. Status of tooth apex contact with the inferior alveolar canal

<table>
<thead>
<tr>
<th>Type of connection in panoramic radiography</th>
<th>CBCT With contact</th>
<th>CBCT Without contact</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>16</td>
<td>7</td>
<td>23</td>
<td>-</td>
</tr>
<tr>
<td>Inferior alveolar canal path loss</td>
<td>17</td>
<td>2</td>
<td>19</td>
<td>-</td>
</tr>
<tr>
<td>Canal path narrowing</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Sudden canal path change</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Radiolucent band over the roots</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Root curvature</td>
<td>10</td>
<td>6</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>59</td>
<td>16</td>
<td>75</td>
<td>0.169</td>
</tr>
</tbody>
</table>

Table 2. Status of the inferior alveolar canal relative to the root in CBCT

<table>
<thead>
<tr>
<th>Type of connection in panoramic radiography</th>
<th>CBCT Lingual</th>
<th>CBCT Buccal</th>
<th>CBCT Middle of root</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>7</td>
<td>14</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>Inferior alveolar canal path loss</td>
<td>13</td>
<td>5</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Canal path narrowing</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Sudden canal path change</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Radiolucent band over the roots</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Root curvature</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>30</td>
<td>6</td>
<td>75</td>
</tr>
</tbody>
</table>
were statistically consistent with CBCT (27). This difference may be due to the sample size. Jung et al. also reported that there was a significant relationship between panoramic and CBCT findings in an examination of 175 teeth (28). In the present study, in the case of radiolucent band over the roots, there was a complete agreement between the panoramic findings and CBCT, and both are effective in determining the high association between the tooth root and the mandibular canal. The studies of Nunes et al. (29), Pourtaji et al. (10) and Nasser et al. (27) are similar to the present study.

Consistent with the present study, Shujaat et al. (30) and Hosseini Ghooshe et al. (31) acknowledged that the mandibular canal is predominantly in the lingual position relative to the root of the third molar. Furthermore, in the study of Yabroudi et al. (23), canals have been reported in the lingual position relative to the third molar root of the mandible. The result of the present study is not consistent with the study of Yamada et al. (32) in terms of mandibular canal position and in most cases, it has been in the buccal position relative to the apex of the third molar root. The different results obtained in different studies may have been due to differences in how the relationship between the mandibular canal and the mandibular third molar was assessed.

Among the limitations of this study are the small sample size, lack of control over the role of different variables such as radiologist skills in the study due to examining the existing images.

There is a strong correlation between panoramic diagnosis and CBCT in cases of sudden canal path change and radiolucent band over the roots in terms of contact with the canal. However, if other signs are seen on panoramic radiography, CBCT should be performed to determine the relationship between the molars and the inferior alveolar canal. In the study of CBCT, in most cases, the canal was in the lingual position of the root. These findings are very helpful in planning surgery and preventing alveolar nerve damage during surgery, as well as helping to control patient costs.

It is suggested that further studies be performed using a larger sample size and compare the CBCT imaging results in different systems.

Acknowledgment

We would like to thank the Vice Chancellor for Research and Technology of Babol University of Medical Sciences for financial support of the research, as well as Dr. Maryam Johari and Dr. Taraneh Ebrahimifard.
References


