Antimicrobial Effects of Lactobacillus Plantarum and Lactobacillus Paracasei Isolated from Honey against Staphylococcus Aureus

E. Lashani (MSc)\(^1\), A. Davoodabadi (PhD)\(^2\), M.M. Soltan Dallal (PhD)\(^3*)

\(^1\)Faculty of Public Health, Tehran University of Medical Sciences, Tehran, I.R. Iran
\(^2\)Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
\(^3\)Food Microbiology Research Center, Department of Microbiology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, I.R. Iran

J Babol Univ Med Sci; 20(3); Mar 2018; PP: 44-9
Received: Sep 23\(^{\text{rd}}\) 2017, Revised: Dec 24\(^{\text{th}}\) 2017, Accepted: Jan 7\(^{\text{th}}\) 2018.

ABSTRACT

BACKGROUND AND OBJECTIVE: Lactobacilli are gram positive, catalase-negative, and found in a variety of fermented foods such as honey, as well as human normal flora. The aim of this study was to identify lactobacillus Plantarum and lactobacillus Paracasei in Iranian honey samples and to investigate the probiotic and antimicrobial properties of them against Staphylococcus aureus.

METHODS: This cross-sectional study investigated 88 honey samples from different areas in Iran at 6 months, from May to September, 2016. Samples were cultured in MRS broth and after were cultured on MRS agar. Sequencing of 16S rDNA gene was used to detect lactobacillus isolates. Then probiotic capacity (acid and bile resistance) of isolates was measured. Antimicrobial activity of lactobacillus isolates was investigated by diffusion method from wells and antibiotic resistance by disc diffusion method.

FINDINGS: From 88 honey samples, 39 Lactobacillus isolates were isolated, four L. plantarum and two L. paracasei were identified by molecular technique. Every six isolates tolerated acidity but were sensitive to bile salt. Five isolates inhibited the growth of S. aureus. The most antibiotic resistance of Lactobacillus strains was seen to vancomycin(100%), nalidixic acid(100%) and streptomycin(100%).

CONCLUSION: Iranian honey samples can be a source for different Lactobacillus species as L. plantarum and L. Paracasei which some of these species could have wonderful inhibitory effects against pathogen bacteria like S. aureus.

KEY WORDS: Lactobacillus, Honey, Probiotics, Staphylococcus Aureus.

Please cite this article as follows:

*Corresponding Author; M.M. Soltan Dallal (PhD)
Address: Food Microbiology Research Center, Faculty of Health, Tehran University of Medical Sciences, Tehran, I.R Iran
Tel: +98 21 88992971
E-mail: msoltandallal@gmail.com
Introduction

Lactobacilli are gram-positive, catalase-negative bacilli and found in a variety of fermented foods, such as honey, as normal human flora (1-3). Honey contains glucose, fructose, vitamins, enzymes and minerals that provide a good environment for beneficial bacteria to growth such as lactobacilli (4,5). Probiotics are living microorganisms that, if consumed sufficiently, cause health effects in the host (6,7). Probiotics can play protective and therapeutic role in infectious diseases by inhibiting pathogen microorganisms (8-10). Varieties of Lactobacillus species such as L. Plantarum and L. Paracasei, Bifidobacterium, Streptococcus, yeasts and molds are used as commercial probiotics (11). Staphylococcus aureus is one of the major causes of foodborne infections and a wide range of hospital infections. Unfortunately, the treatment of Staphylococcus aureus infections is becoming more and more difficult day by day due to an increase in antibiotic resistance (12-14). That’s why scientists are trying to find new therapeutic approaches, such as the use of probiotics for infections of this pathogen (15). Aween et al showed that the L. acidophilus isolated from honey inhibits Staphylococcus aureus (16). Tajabadi and colleagues in Malaysia were able to separate L. Plantarum, L. Fermentum and L. Pentosus from the species (17). So far, there has been no study in Iran on the presence of lactobacilli in honey and the study of their probiotic and antimicrobial properties. Therefore, the aim of this study was to investigate the presence of lactobacilli in Iranian honey samples and to study the probiotic properties and their inhibitory effect on Staphylococcus aureus.

Methods

This cross-sectional study was carried out in the Department of Microbiology of Babol University of Medical Sciences during six months from April to September of 2016. 88 natural honey samples from 13 provinces were purchased directly from beekeepers. One gram of honey samples was inoculated into MRS Broth (Merck, Germany) medium and incubated at 30 °C for three to seven days in a candle jar. The re-cultivation was then performed on a MRS agar (Merck, Germany). The MRS agar plate was incubated for two to five days in a candle jar at a temperature of 30 °C. From each positive culture honey sample, two or three different colonies were examined and gram-positive and catalase-negative bacilli were isolated. Isolates were detected at the species level by sequencing of 16S rDNA gene.

DNA extraction was performed by boiling procedure (18). To perform PCR, primers were used for the 27F (5’-CTCGTTGCGGGACTTAA-3’) and 1522R (5’-GCAGCAGTAGGGAATCTTC-3’) and the PCR products were sequenced and blast in the NCBI (19, 20). To test the probiotic capacity of Lactobacillus isolates (survival in acidic conditions), one ml of suspension containing 109 CFU/ml of each isolate was added to 9 ml of PBS with a pH of 3.3 and the survival bacterial count at time of zero and after 3 hours incubation was counted on a MRS agar. Isolates that are less than 106 CFU/ml after three hours consider as resistant to acid (21).

To investigate the resistance of each isolate of lactobacillus to bile, two tubes were prepared containing one 9 milliliters of MRS broth containing 0.3% (W/V) bile (Oxgall, Sigma, Germany) and the other containing MRS broth without bile (control) to the both tubes 90 μl of freshly isolated Lactobacillus isolate were added. The growth rate of the isolates at 0 and 8 hours after incubation was measured by a spectrophotometer at 630 nm (22,23).

Resistance of isolates to bile was calculated using Cinh coefficient formula. Isolates with an inhibitory factor of less than 0.4 are considered as resistant to bile (24). The antimicrobial activity of Lactobacillus isolates was investigated by diffusion method from wells. At first, a suspension of 107 CFU/mL was prepared from Staphylococcus aureus ATCC 25923 and cultured as lawn cultivation on the nutrient agar. The supernatant of Lactobacillus isolates was isolated in MRS broth with centrifuge (13000 RPM-10 min) and 100 μl of it was added to each well, and the plates were incubated for 14 to 15 hours at 37 º C. The diameter of the inhibition-growth zone around the wells was measured and the isolates with the diameter of the inhibition zone <11 mm as negative, 16-11 mm as an inhibitor of medium (+), 17-22 mm as a strong inhibitor (+++) and> 23 mm were classified as very potent inhibitors (++++). Positive control strain L. Rhamnosus GG was also used (25).

The experiments were repeated twice. Antimicrobial resistance of isolates was investigated by disc diffusion method on a Mueller-Hinton Agar (Merck, Germany) containing 10% MRS broth. The diameter of the inhibition zone of discs was measured.
and interpreted according to previous studies, so that the isolates (≤15 mm) were resistant, (16-16 mm) moderate and (≥ 21 mm) sensitive (26). Antibiotics of cefotaxime (30 μg), nalidixic acid (30 μg), vancomycin (30 μg), cotrimoxazole (25 μg), ciprofloxacin (5 μg), streptomycin (10 μg), amikacin (30 μg) Gentamicin (10 μg), erythromycin (15 μg), tetracycline (30 μg) and ampicillin (10 μg) were used.

Results

Of the 88 natural honey samples, 16 samples (18.18%) were positive for Lactobacillus cultivation. The highest number of samples collected from Mazandaran province then from Tehran province, but the Lactobacillus plant positive in Tehran province was higher than Mazandaran province, so that in Mazandaran province, out of a total of 40 samples, only 8 samples (20%) and in Tehran province, out of 25 samples, 8 samples (32%) were positive. The rest of the samples belonging to other provinces were all negatively affected by microbial culture.

At total of 39 isolates of Lactobacillus were identified by phenotypic method and PCR at genus level, among them, 6 isolates including four isolates L. Plantarum and two isolated L. Paracasei was identified by sequencing the 16S rDNA gene at the species level (Fig 1). In the acid resistance test, all six isolates tolerated acidic conditions, and in the bile resistivity test, each of the six isolates obtained a suppression factor of 0.4 and was in the group of bacteria sensitive to bile (Table 1).

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Code</th>
<th>Resistance to acid</th>
<th>Resistance to bile</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Plantarum</td>
<td>H15</td>
<td>10^6×5.7</td>
<td>10^6×5.4</td>
</tr>
<tr>
<td>L Plantarum</td>
<td>H59</td>
<td>10^6×6.3</td>
<td>10^6×6.4</td>
</tr>
<tr>
<td>L Plantarum</td>
<td>H46</td>
<td>10^6×8.1</td>
<td>10^6×8.3</td>
</tr>
<tr>
<td>L Plantarum</td>
<td>H47</td>
<td>10^6×2.2</td>
<td>10^6×2.1</td>
</tr>
<tr>
<td>L Paracasei</td>
<td>H13</td>
<td>10^6×1.8</td>
<td>10^6×1.8</td>
</tr>
<tr>
<td>L Paracasei</td>
<td>H14</td>
<td>10^6×6.8</td>
<td>10^6×6.8</td>
</tr>
</tbody>
</table>

h0: Number of bacteria counted at zero, h3: Number of bacteria counted after 3 hours

Table 1. Resistance of Lactobacillus Plantarum and lactobacillus Paracasei isolates, isolated from honey to acid and bile.

Table 2. Antibacterial activity of Lactobacillus Plantarum and Lactobacillus Paracasei isolated from honey against Staphylococcus aureus ATCC 25923.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Code</th>
<th>Staphylococcus aureus mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Plantarum</td>
<td>H15</td>
<td>0(-)</td>
</tr>
<tr>
<td>L Plantarum</td>
<td>H59</td>
<td>20(++)</td>
</tr>
<tr>
<td>L Plantarum</td>
<td>H46</td>
<td>14(+)</td>
</tr>
<tr>
<td>L Plantarum</td>
<td>H47</td>
<td>16(+)</td>
</tr>
<tr>
<td>L Paracasei</td>
<td>H13</td>
<td>18(++)</td>
</tr>
<tr>
<td>L Paracasei</td>
<td>H14</td>
<td>16(+)</td>
</tr>
<tr>
<td>L Rhamnosus</td>
<td>GG</td>
<td>18(++)</td>
</tr>
</tbody>
</table>

* Isolates with a diameter of the inhibition zone <11 mm were considered as negative, 16 to 11 mm were considered as medium inhibitors (+), 22 to 17 mm were considered as strong inhibitors (+++) and ≥ mm23 were considered as very strong inhibitors (+++).

Discussion

The present study showed that L Plantarum and L Paracasei isolated from honey can inhibit the growth of pathogenic bacteria such as Staphylococcus aureus. Aween et al. in Malaysia, of 13 samples isolated from
honey, isolated 32 isolates of acidic lactic bacteria, of which 6 L. Acidophilus isolates were evaluated for anti-microbial activity against different pathogens, with the highest inhibitory effect on Staphylococcus aureus (16). In Malaysia, Tajabadi et al. investigated 92 isolates of lactobacillus in phenotypic and molecular terms, from 10 samples of honey from honey bee, most of which were L. Plantarum, L. Fermentum and L. Pentosus was (17). The present study, similar to the above two studies, was able to isolate lactobacillus from honey samples. However, the type of Lactobacillus species detected is different from the present study, which can indicate the diversity of lactobacillus species in honey samples in different regions of the world.

It has been determined that L Paracasei, L. Rhamnosus, L. Acidophilus, L. Casei and L. Fermentum isolated from sources such as goat's milk, human vagina, and etc, can inhibit Staphylococcus aureus (14, 27-29). In this study, all isolates were susceptible to acid but resistant to bile. In a study by Kelanne et al. in Finland, all lactobacilli isolated from honey and fruit were susceptible to acid but resistant to bile (30). It seems that the reason for the difference between the present study and Kelanne study is time of tests. In the present study, after three hours’ exposure to the acid, and in the Kelanne study, after seven days of exposure to the acid, the isolates survivance was studied. In the Kelanne study, the isolates survivance after three hours’ exposure to the bile but in the present study after 8 hours’ exposure to the bile was checked. Lactobacillus isolates of probiotic candidates should not have antibiotic resistance genes that can be transmitted to other bacteria. The most antibiotic resistance to vancomycin, nalidixic acid and streptomycin was observed in this study. The study of Davoodabadi et al in Iran showed that the isolated lactobacilli of the stool sample (92.59%) were resistant to streptomycin and vancomycin (31). It has been shown that lactobacilli are intrinsically resistant to vancomycin and aminoglycosides, and this chromosomal resistance is un-transferable and its safety is not worrying (32,33).

The present study showed that Iranian honey samples could be a source of indigenous lactobacilli and some of these isolates have an antimicrobial potential especially against Staphylococcus aureus and may be used as a probiotic candidate for prevention and treatment of infections caused by this pathogen, which requires further investigation.

Conflict of Interest: No conflicts of interest.

Acknowledgment

This article is the result of a research project approved by the Food Microbiology Research Center of Tehran University of Medical Sciences and Health Services under the contract number 32129. Hereby, we would like to thank the Research Council of Tehran University of Medical Sciences for financial support of this research as well as Microbiology department of Babol medical school, especially Dr. Rajabnia.
References