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ABSTRACT  

BACKGROUND AND OBJECTIVE: The term “epigenetic” refers to all non-heritable and reversible changes in the 

expression of a gene that does not cause a change in the DNA sequence. The most important epigenetic mechanisms 

associated with gene expression include DNA methylation, histone modifications, and suppression of gene expression 

with RNA. Considering the reversibility of epigenetic changes, it seems that this feature can be influenced by dietary 

constituents and thus, we can prevent the spread of certain cancers by controlling the diet. The purpose of this study is 

to investigate the effects of food on the prevention of common cancers and the mechanisms involved in cellular 

activities based on recent studies and the compilation of their results. 

METHODS: In this review article, we searched Pubmed and Elsevier databases using certain keywords such as 

“epigenetics”, “cancer” and “nutrition” and articles related to the effects of epigenetics on cancer and dietary 

constituents were evaluated. 

FINDINGS: Of 439 studies found in the search engines between 1997 and 2016, 64 articles were selected and their 

results indicated that many of the active components in the diet will inhibit the incidence of cancer through DNA 

methylation mechanisms, histone modifications, and miRNA. 

CONCLUSION: The anticancer effect of the active compounds in the diet on specific epigenetic changes can be used 

as a special and unidentified mechanism for preventing cancer. 
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Introduction 

Epigenetic changes are inherited changes in gene 

expression that do not change the DNA sequence (1). 

There is a lot of evidence indicating that there is a 

relationship between epigenetic disorders and various 

diseases, including cancer, multiple sclerosis (2), 

diabetes (3), and obesity. Recent studies show the 

effects of dietary compounds on the cancer process. 

The isothiocyanate in the family of cabbage 

(cauliflower, broccoli), diallyl sulfide (organosulfur 

compound in garlic), isoflavone, phytosterol, 

theophylline, folate, selenium, vitamin E, flavonoids 

and dietary fiber may reduce the risk of cancer (4, 5). 

The main mechanisms of epigenetic control in 

mammals include DNA methylation, histone 

modifications, and RNA interferences (6, 7).  

The key to epigenetic changes in mammals is the 

addition of a 5-methylcytosine group in two nucleotide 

sequences of CPG (1, 8). The CPG sequences are CG-

rich regions known as CPG islands and are associated 

with transcriptional initiation regions (6, 8). 

Hypermethylation of these regions can lead to 

silencing of transcription of tumor suppressor genes 

and their inactivation in various cancers (1).  

The addition of covalent methyl group is catalyzed 

by DNA methyltransferase family (DNMTs), which 

utilizes S-Adenosyl methionine (SAM) as a methyl 

group provider (8). DNMT1 is initially involved in the 

storage of DNA methylation after replication, and 

DNMT3A and DNMT3B interact with the 

transcriptional machine and mediate methylation. 

Several studies have shown that DNMTs can be 

expressed in a number of cancers (8). The purpose of 

this study is to investigate the effects of food on the 

prevention of common cancers and the mechanisms 

involved in cellular activities based on recent studies 

and the compilation of their results.  

 

 

Methods 

In this review article, the effect of food on the 

cancer formation process using the key words 

“Epigenetic”, “Cancer” and “Nutrition”, the scientific 

articles indexed in Pubmed and Elsevier databases 

between 1997 and 2016 were reviewed and the articles 

were carefully evaluated. 

 

 

Results 

439 articles were extracted in relation to the keywords, 

among which 64 articles were selected and reviewed. 

Articles that examined the effects of other factors such 

as age or the presence of environmental factors such as 

UV were excluded. According to these studies, active 

food compound cause epigenetic changes with 

mechanisms such as DNA methylation in progesterone 

CPGs, histone modifications, and miRNA expression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. DNA methylation in the cytosine of the CPG 

island promoters leads to silencing of transcription of 

tumor suppressor genes and their malignant changes 

 

Dietary compounds, DNA methylation and 

hereditary epigenetic changes: A number of 

epidemiological studies associate adverse 

environmental and nutritional conditions in the early 

stages of growth and embryonic development, and then 

at puberty, with the risk of developing certain diseases 

in adulthood. Although the underlying mechanism of 

this relationship is still unknown, evidence suggests 

interference with epigenetic disorders (8–11). 

Dietary compounds and DNA methylation in 

cancer: Compounds such as folate, tea polyphenols, 

soy isoflavones and catechol polyphenols have anti-

cancer properties with DNA methylation mechanisms 

(12, 13) (Fig 1). Folate is involved in the metabolism 

of single-carbon units, DNA synthesis and DNA 

methylation (14). Folate deficiency causes cancer 

though DNA damage (inappropriate uracil pairing) 

(15, 16), ectopic methylation, such as promoter 

methylation (17, 18), and DNMT1 inhibition (19). 

Enriching a diet with folic acid or natural folate 

reduces the risk of colorectal cancer (20, 21). 

Additionally, its high doses (20 mg folate/kg) 

significantly decrease the polyps of the intestine in 

Apc Min/+ mice after 3 months. However, after 6 

months, supplementation with folate has an opposite 

effect on the number of polyps in the intestine (22). In 

a study, folic acid deficiency in mothers was  [
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associated with DNA ectopic methylation, which leads 

to neural tube defects. Low levels of folate in the 

serum of mothers are associated with DNA 

hypomethylation in the brain and DNA 

hypermethylation in the skin and fetal heart that is 

associated with neural tube defects (23).  

EGCG is the main polyphenol in green tea with 

antioxidant properties that can inhibit tumor metastasis 

and angiogenesis (24). Epidemiological studies have 

shown that using green tea reduces the risk of 

hepatocellular carcinoma (25). EGCG directly or 

indirectly inhibits DNMT (26). Treatment of human 

cancer cells, esophageal cancer cells KYSE510, HT-29 

colon cancer, and PC3-induced prostate cancer with 

EGCG result in the return of hypermethylation of p16, 

RARβ, and MGMT genes (27).  

Treatment of Caco-2 cells with EGCG inhibits 

cellular growth and inhibits the promoter's methylation 

of anti-tumor genes p16 and P15 (28). Treatment of 

breast cancer cell line MCF-7 and promyelocytic 

leukemia cells with EGCC have the potential to reduce 

cell proliferation and induction of apoptosis (29). In 

fact, EGCG is effective in both antioxidant and 

epigenetic changes to various cancer cells. However, 

the potential harmful effects of high consumption of 

green tea (DNA hypomethylation and oncogene 

activation and genomic instability) should be taken 

into account.  

Genistein (soy isoflavone) has the effects of cancer 

prevention through epigenetic mechanisms (30). 

Genistein causes the reversal of DNA methylation and 

re-activation of RARß and MGMT genes in KYSE510 

cells (31), and at high doses, it inhibits the DNA of 

methyl transferases in LNcap and PC3 cell lines in 

prostate cancer (32).  

These findings indicate that genistein activates 

tumor suppressor genes that have been silenced. 

Resveratrol is a natural phytoalloxin compound that 

the ability to inhibit proliferation of cells, which 

increases the methylation of P16 and reduces the 

methylation of P15 in Caco2 cells (28).  

Curcumin (Curcuma longa rhizome flavonoid) also 

has anticancer activity. Curcumin and genistein cause 

the reversal of the RARß2 gene hypermethylation in 

the cervical cancer cell line SiHa and HeLa, as well as 

progressive demethylation (33). Quercetin is a 

flavonoid with antioxidant and anti-proliferative 

activity, which is a natural inhibitor of catechol-O-

methyl transferase (COMT). Quercetin induces cell 

cycle stoppage and apoptosis of the hamster's oral 

tumor, and the effect is related to the control of 

DNMT1 (33). Quercetin also increases the 

bioavailability of green tea polyphenols in the 

investigation of the A549 and O-786 cell lines, as well 

as in mice with immunodeficiency (34).  

In addition, quercetin boosts anti-proliferative 

activity of EGCG by increasing intracellular EGCG 

concentration and reducing methylation in prostate 

cancer cells (35). Selenium is an essential ingredient 

that has potential for preventing cancer due to 

antioxidant and pro-apoptotic effects (31, 36). 

Treatment of Caco2 cells with selenite induces total 

hypomethylation and promoter methylation of the P53 

gene (36).  

Selenium plays an anticancer role in human colon 

cancer through DNMT inhibition (37). However, 

selenium and vitamin E inhibitors did not provide 

evidence to prove that selenium prevents prostate, 

lung, or colorectal cancers (38).  

Changes after histone translation: Histones have an 

active function in regulating chromatin structure and 

gene expression. Histone tails may change by 

acetylation, Methylation, Phosphorylation, Poly ADP-

Ribosylation, sumoylation, or ubiquitination (6, 39). 

DNA methylation and histone modification are not 

independent events.  

The methylation of cytosine in CPG islands is 

associated with the attachment between binding 

proteins and methyl cytosine, followed by catalytic 

enzymes of histone modifications (1, 6). Acetylation in 

histone lysine amino group neutralizes the positive 

lysine load by histone acetyltransferases (HATs) and 

releases the histone tail of the negatively charged 

DNA. These changes lead to access to transcription 

factors for the expression of genes in that area (6). 

Histone deacetylases leads to chromatin congestion 

and transcription inhibition by histone deacetylases 

(HDACs). In the deacetylated state, the amine lysine 

group has a positive charge and allows the tail of the 

histone to interact strongly with the DNA strand that 

has a negative charge (40, 41).  

Methylation of the roots of lysine and arginine in 

H3 and H4 histones can have suppressive and 

transcriptional effects depending on the type of amino 

acid and its position. Histone methylation without 

changing the histone load changes its chemical 

properties and thus affects the tendency for regulatory 

proteins. Histone methylation is catalyzed by histone 

methyltransferases, while the omission of methyl 

groups is catalyzed by histone demethylase (42) 
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(Fig2). H1 phosphorylation weakens its binding to 

DNA and gives free access to transcription factors and 

gene expression. Histonomic phosphorylation is 

observed in a number of cancers, such as breast, 

prostate and colorectal cancer (39).  

Dietary compounds and histone modifications in 

cancer: Folate can affect the methylation of histones 

in cancer. A diet that is low in methyl donors leads to 

changes in H4-K20 methylation and H3-K9 

acetylation, which is usually observed in liver cancer 

(43). EGCG induces changes in human A431 

melanoma cells. EGCG reduces the deacetylation 

activity of histone and increases lysine acetylation in 

histones 4 and 3 and reduces lysine 9 histone 3 

methylation (44).  

In the MCF-7 cells, genistein reduces the histone 3 

acetylation and induces growth response to mitogens 

and histone deacetylase (HDAC) inhibitors (45). In the 

MCF-7 breast cancer cell line, resveratrol inhibits the 

dioxin-induced histone modifications in the BRCA-1 

gene and suppresses the expression of BRCA1 protein, 

decreasing the DNA fragmentation associated with 

dioxin (46).  

Treatment of brain cancer cells with curcumin 

causes hypomethylation of H3 and H4 histones (47). 

Conversely, in prostate cancer cells, curcumin induces 

acetylation of H3 and H4 and also causes apoptosis 

through Bcl2 and P53 families (48).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Histone modifications determine the 

interaction of histones with DNA and the 

interaction of non-histone proteins with chromatin 

 

RNA-related silence by microRNAs in cancer: 

Micro-RNAs or miRNAs play a role in the post-

transcriptional configuration by binding to the non-

translatable region of the target 3' (3′UTR) mRNA (49, 

50). MiRNA acts in two ways: full pairing with 

complementary cells that results in the destruction of 

the target mRNA, and partial pairing that results in 

inhibiting the translation of the target mRNA (49, 50) 

(Fig 3). In addition, they also play a role in 

transcriptional regulation, which can bind to 

complementary sequences in the genome and induce 

gene silencing through the administration of 

suppressor proteins and induction of symptoms of 

chromatin suppression (51, 52). Changes in the 

expression of miRNAs are a common occurrence in 

cancer. Some of them act as suppressor tumors of 

hypothetical genes, and some as oncogenes (49, 50).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. MiRNAs are small and noncoding RNAs 

that contribute to post-transcription regulation 

through binding to the target mRNA 

 

Dietary components and miRNA changes in cancer: 

Nutrition, lifestyle and genetic factors also affect the 

risk of cancer through miRNAs (Fig. 3). Fat-rich diets 

in mothers before fertilization, during pregnancy and 

breastfeeding induces long-term changes in IGF2 

expression (11). Folate deficiency leads to a general 

increase in the expression of miRNA in lymphocyte 

(53). The hepatocarcinogenesis of methyl deficiency in 

mice results in reduced expression of miRNA gene 

(54, 55), including miRNA-34a and miRNA-127, 

which are involved in apoptosis and cell proliferation, 

respectively (56).  

In addition, folic acid supplement inhibits the 

expression of miRNA-10a induced by alcohol use (57). 

EGCG modifies the expression of a number of 

miRNAs in human hepatocyte carcinoma, including 

miRNA-16, which targets the anti-apoptotic protein 

Bcl-2 (58). Treatment with uveal melanoma cells with 

genistein decreases cell proliferation and increases the  [
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expression of miRNA-27a (59). In BALB / C nu / nu 

mice, genistein significantly inhibits the growth of the 

human uveal melanoma xenografts (59). The treatment 

of the colon cancer cell line SW480 with resveratrol 

reduces the level of several oncogene miRNAs 

targeting PTEN and PDCD4 (60). Simultaneously, this 

treatment increases the amount of miR-663 that targets 

the TGFβ growth factor transcript (61).  

Treatment of BxPC-3 human pancreatic cancer 

cells with curcumin increases the expression of 

miRNA22 and decreases expression of miRNA-199a 

(62). Quercetin induces miR-146a, a negative regulator 

of pro-inflammatory NF-kB activity in HT-29 colon 

cancer cells (63). The treatment of LNCaP prostate 

cancer cells with selenite-induced p53 induces 

apoptosis and expresses miR-34 that targets the P53 

transcript (64). 

 

 

Discussion 

This study shows that active compounds are 

effective on DNA methylation, histone modifications, 

and miRNA expression in cancer. However, it is 

unlikely that the protective effects would be caused by 

only one dietary component. Therefore, identification 

of relevant compounds and metabolites is required. 

Another key issue is the appropriate concentrations of 

herbal compounds for inducing optimal epigenetic 

modifications (6).  

Epigenetic changes in tissue are important for 

cellular differentiation. Thus, active food components 

may cause different epigenetic changes in different 

tissues and even different types of cells in a tissue. In 

addition, epigenetic changes induced by food 

components can be temporary. Therefore, it is 

important to recognize the specific effects of the cell 

and tissue of an active dietary compound and related 

kinetics. The development of relevant animal tissue 

culture models is necessary to study the effects of diet 

and the environment on epigenetic changes to clarify 

their relationship and their interaction potential.  

The complex interactions between environmental, 

genetic and epigenetic factors during cancer 

development have not been thoroughly defined. 

However, the definition of bioactive food components 

is necessary to provide safe dietary advice and to 

determine the dose required for preventative effects. 

Therefore, further studies are needed to identify 

epigenetic changes and cellular features and time 

patterns. Nevertheless, despite so many unresolved 

questions, there is a promising future for dietary 

recommendations on cancer prevention and the 

provision of natural-based treatment programs for 

cancer treatment. 
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