Role of Nutrition in Female and Male Fertility

Sh. Alizadeh (MSc)¹, P. Mirmiran (PhD)², M. Hajifoghaha (MSc)¹

1. Students Research Committee, Department of Midwifery, Faculty of Nursing & Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, I.R.Iran
2. Nutrition Research Center, Endocrinology and Metabolism Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, I.R.Iran

ABSTRACT

BACKGROUND AND OBJECTIVE: One of the sustainable development goals is universal access to reproductive services by 2030. Reproductive disorders is an important neglected component in reproductive health. Some factors, like type of nutrition effects on fertility. The aim of this study is to determine role of nutrition in female and male fertility.

METHODS: This study is a narrative review article. Search was conducted by using relevant keywords such as: infertility, fertility, nutrition and diet. Results were limited to 39 articles published in Iranian and international journals in SID, Magiran, Scopus, PubMed, Google Scholar, Elsevier databases, in the period 2011-2016. Also nutrition guidelines for infertile couples in scientific nutritional and university sites was used.

FINDINGS: The results showed that unsaturated fatty acids, fruits and vegetables and low-fat dairy, for improving women’s reproductive recommended. Factors that reduce male fertility include: high consumption of red and processed meats, high intake of saturated fat, low intake of unsaturated fats, antioxidants, fruits and vegetables.

CONCLUSION: Following a balanced diet is one of promising and valuable interventions in maintaining reproductive health. However, Identification of a suitable fertility diet is "Important achievement” in the management of fertility.

KEYWORDS: Diet, Fertility, Food, Infertility.

Please cite this article as follows:
Introduction

One of the goals of sustainable development is the universal access to sexual and reproductive health by 2030 (1,2). Reproductive disorders is an important forgotten component in reproductive health. The World Health Organization has mentioned infertility as a disease that affects over 13 to 17 percent of couples (2). Infertility in comparison to stressful events of life, after the death of mother, father and betrayed wife is in fourth place (3). WHO has estimated that for every four couples in developing countries, one person is affected by infertility (4). In 2010 among women of childbearing age, 9.1% of patients were primary infertility and 10.5 percent were secondary infertility (2). In general fertility rate in Iran is 13.2 percent that 93.9 percent are male infertility cases, 40.3 percent of women and 10.1 of cases are unknown (3).

Lifestyle, nutrition, over weight and activity level has an effect on fertility (5, 6). People who has proper diet and lifestyle have six times increased fertility (7). Obese or overweight women with polycystic ovarian syndrome, have less physical activity than individuals without polycystic ovarian syndrome (8,9) that this body over weight has negative effects on the physical aspects of quality of life, particularly among women with polycystic ovarian syndrome (10).

Fatty acids, carbohydrates, proteins are involved in the activities of human physiology and absorption and inappropriate use of them causing disturbance on metabolic homeostasis and affecting on fertility of women (11,12). Soy consumption is associated with lower sperm count (13). Alcohol also has a negative effect on semen analysis parameters (14,15). In terms of religious and cultural, fertility has a great importance in Iranian society (16,17). According to current investigations in the field of infertility treatment and fertility improvement around the world, as well as the effect of nutrition on the development of fertility and childbearing, this review was conducted to investigate the role of nutrition in the fertility of men and women.

Methods

In this traditional review study, the role of nutrition in fertility was investigated by searching the databases of SID, Magiran, Scopus, PubMed, Google Scholar and Elsevier in the period 2011 to 2016, using the keywords infertility, infertility, fertility, nutrition, diet and infertility, fertility, diet, food. First all articles related to nutrition and fertility and infertility were collected and then laboratory and animal studies and articles available with abstract or articles have been published in other languages other than English and Farsi were omitted.

All randomized controlled trials, cross-sectional, retrospective, case-control, cross-sectional and cohort studies with full text in relation to the role of nutrition on fertility were published in Farsi and English, were considered. Also in this study nutrition guides for infertile patients available on valid nutrition servers and universities such as Harvard were used.

Results

finally, from 297 obtained article 39 article (Infertility of women: 5 Iranian, 14 English and male infertility: 4 Iranian and 16 English) were studied. Proper diet can be useful for increasing fertility. The fertility diet includes nutrients needed to produce sex hormones, ovum and sperm health and fetal development (14).

Micronutrients that are antioxidants, vitamins D, E, C, B12, B6, COQ10, lipoic acid, folic acid, iron, selenium, zinc, essential fatty acids and minerals and macronutrients are protein, fiber, fat, carbohydrates, have a direct influence on fertility (15). High consumption of red meat, beef and bacon has increased the risk of endometriosis by 80 percent, while fresh vegetables and fruits reduce the risk of endometriosis by 40 percent (16, 15). The role of nutrition in infertility of men and women were analyzed separately (tables 1, 2).

Table 1. Overview of the role of nutrition in women's fertility

<table>
<thead>
<tr>
<th>First author (year)</th>
<th>The title</th>
<th>Type of study</th>
<th>Check tool</th>
<th>Sample size and execution location</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Görrna (17) (2016)</td>
<td>Protein Effect on Women Infertility</td>
<td>Cross sectional</td>
<td>Checking nutrition and anthropometry</td>
<td>100 people - Poland</td>
<td>The amount of calories and protein in infertile women were higher</td>
</tr>
<tr>
<td>Afeiche (18) (2016)</td>
<td>The relationship between dairy consumption and laboratory fertilization in women</td>
<td>Futuristic cohort</td>
<td>Oral frequency questionnaire and examination of ovarian and fetal status</td>
<td>232 people, USA</td>
<td>Dairy consumption was associated with a higher chance of a newborn birth.</td>
</tr>
<tr>
<td>Study Title</td>
<td>Researcher (Year)</td>
<td>Study Design</td>
<td>Methodology</td>
<td>Outcome/Findings</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Eating a low diet of starch and dairy products in the treatment of obesity</td>
<td>Phy (20) (2015)</td>
<td>Consulting</td>
<td>Measuring BMI, Glucose, HbA1C, Testosterone</td>
<td>24 women, USA With the intervention, weight loss and testosterone reduction were observed.</td>
<td></td>
</tr>
<tr>
<td>Weight loss in women with and without polycystic ovary syndrome with a very low calorie diet</td>
<td>Nikokavoura (21) (2015)</td>
<td>Intervventional</td>
<td>600Kcal / day with multivitamin</td>
<td>1016 female - England Weight loss in the two groups did not differ significantly.</td>
<td></td>
</tr>
<tr>
<td>Comparison of diet intake, physical activity and Weight of infertile women with fertile women</td>
<td>Sadeghi (22) (2015)</td>
<td>Analytical descriptive</td>
<td>Researcher-made questionnaire and anthropometric</td>
<td>288 women - Iran Physical activity in infertile women was less than healthy. Receiving calories, protein, carbohydrates, selenium, zinc and vitamin C were higher in infertile women, but receiving fat, vitamin E and iron in healthy women were higher.</td>
<td></td>
</tr>
<tr>
<td>Vitamin D and female fertility</td>
<td>Lerchbaum (23) (2014)</td>
<td>Review</td>
<td>Study reviews</td>
<td>Germany Women with a polycystic ovary that received vitamin D had increased endometrial thickness. Vitamin D increased ovarian reserve at the late stages of fertility.</td>
<td></td>
</tr>
<tr>
<td>Antioxidant intake in infertile women with unknown cause</td>
<td>Ruder (24) (2014)</td>
<td>Cross sectional</td>
<td>Oral Frequency Questionnaire</td>
<td>273 women - USA The consumption of vitamin E was associated with a shorter time for pregnant women over the age of 30 years. Women under 35 years of age and with increased beta-carotene and vitamin C had a shorter time to get pregnant.</td>
<td></td>
</tr>
<tr>
<td>Nutrition in women with polycystic ovary syndrome</td>
<td>McGrievy (26) (2014)</td>
<td>Cross sectional</td>
<td>EBI questionnaire and quality of life and physical activity questionnaire</td>
<td>46 women - USA Infertile overweight Women with polycystic ovary syndrome had a poor diet for whole grains, fiber and iron.</td>
<td></td>
</tr>
<tr>
<td>Supplementation of oral antioxidants in infertile women with unknown cause</td>
<td>Youssef (27) (2014)</td>
<td>Controlled trial</td>
<td>Hormonal, ultrasound and laparoscopic examination</td>
<td>218 women - Egypt Use of vitamins A, E and C, Zn, Amino Acid and Bioflavonoids Antioxidant did not increase fertility in infertile women with unknown cause.</td>
<td></td>
</tr>
<tr>
<td>The relationship between dairy consumption and polycystic ovary syndrome</td>
<td>Rajaeeieh (28) (2014)</td>
<td>Cross sectional</td>
<td>Oral Frequency Questionnaire</td>
<td>400 women - Iran Milk consumption was not associated with polycystic ovary.</td>
<td></td>
</tr>
<tr>
<td>Evaluation of serum zinc levels in infertile women with and without polycystic ovary syndrome</td>
<td>Sohrabvand (29) (2013)</td>
<td>Case-control</td>
<td>Measuring serum zinc level</td>
<td>50 women - Iran There was no significant difference in serum level of zinc between the two groups.</td>
<td></td>
</tr>
<tr>
<td>Effect of micronutrient supplements on women’s Fertility</td>
<td>Buhling (30) (2013)</td>
<td>Review</td>
<td>Study reviews</td>
<td>Germany The use of vitamins, iron, iodine and selenium had a positive impact on infertility treatment.</td>
<td></td>
</tr>
<tr>
<td>Effect of fat on oocyte quality</td>
<td>Kazemi (31) (2013)</td>
<td>Cross sectional</td>
<td>Oral Frequency Questionnaire</td>
<td>236 women - Iran Fat consumption had a negative effect on fetal growth. Zygote, containing low levels of antioxidant, has a lower chance of fertilization and replacement.</td>
<td></td>
</tr>
<tr>
<td>Comparison of Nutrition in Infertile Women with Polycystic Ovary Syndrome with Healthy Women</td>
<td>Tsai (32) (2013)</td>
<td>Case-control</td>
<td>Anthropometric and food intake questionnaire</td>
<td>206 women - Taiwan Women with polycystic ovary syndrome had lower carbohydrate levels than controls.</td>
<td></td>
</tr>
<tr>
<td>The relationship between pre-pregnancy diet and the likelihood of continued pregnancy in women treated with IVF / ICSI</td>
<td>Twigt (33) (2012)</td>
<td>Cross sectional</td>
<td>Diet questionnaire</td>
<td>199 women - the Netherlands There was a correlation between the dietary scores and the odds of pregnancy after IVF / ICSI treatment.</td>
<td></td>
</tr>
<tr>
<td>Lifestyle modification in overweight and obese women with polycystic ovary syndrome</td>
<td>Mahoney (34) (2012)</td>
<td>Futuristic Interventional</td>
<td>Oral Frequency Questionnaire, checking Physical Activity</td>
<td>12 women - USA Menstruation is regular, with a change in diet, exercise and physical activity in about 50% of people.</td>
<td></td>
</tr>
<tr>
<td>Food patterns and fertility disorders</td>
<td>Toledo (35) (2011)</td>
<td>nested case control study</td>
<td>Oral Frequency Questionnaire</td>
<td>485 women - Spain The Mediterranean diet (fruit, vegetables, red meat and processed meat, trans and unsaturated fat, grains, nuts and beans, soft drinks, sugar and juice, alcohol and sodium (36)) increased the fertility rate.</td>
<td></td>
</tr>
</tbody>
</table>

Terms: Fertility, polycystic ovary syndrome, obesity, lifestyle modification, infertility, antioxidants, micronutrient supplements, dietary scores, IVF / ICSI treatment.
Table 2. Overview of the role of nutrition in male fertility

<table>
<thead>
<tr>
<th>First author (year)</th>
<th>The title</th>
<th>Type of study</th>
<th>Check tools</th>
<th>Sample size and execution location</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giahi (37) (2016)</td>
<td>Nutrition and male infertility</td>
<td>Review</td>
<td>Study reviews</td>
<td>23 study-Iran</td>
<td>Excessive consumption of red and processed meat, low consumption of unsaturated fats and antioxidants, and fruits and vegetables, high saturated fats, reduced fertility in men.</td>
</tr>
<tr>
<td>Eslamian (38) (2016)</td>
<td>Western Nutrition and Azoospermia</td>
<td>Case-control</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>342men - Iran</td>
<td>Western dietary patterns (refined grains, processed meats and sweets (35)) are associated with the risk of azoospermia.</td>
</tr>
<tr>
<td>Pant (40) (2015)</td>
<td>The relationship between Plumbum and cadmium in semen quality</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>119men-India</td>
<td>There was a negative relationship between Plumbum and cadmium in semen and concentration, movement and abnormal morphology of sperm.</td>
</tr>
<tr>
<td>Rato (41) (2014)</td>
<td>Men's high-calorie diet and fertility</td>
<td>Review</td>
<td>Study reviews</td>
<td>Portugal</td>
<td>There was a negative correlation between high calorie diet, fat and processed meat with semen parameters.</td>
</tr>
<tr>
<td>Chavarro (43) (2014)</td>
<td>The relationship between trans fatty acid and sperm count in healthy men</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>209men-Spain</td>
<td>There was a negative correlation between acid intake and sperm count.</td>
</tr>
<tr>
<td>Chiu (44) (2014)</td>
<td>The connection of drinking sweetened with semen quality in young men</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>189189men - USA</td>
<td>Sugar-beverage consumption has a reverse relationship with progressive sperm motility.</td>
</tr>
<tr>
<td>Afeiche (45) (2014)</td>
<td>Dairy consumption and semen quality</td>
<td>Longitudinal</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>155 males - American Boston</td>
<td>Low-fat dairy consumption is associated with progressive sperm motility. The consumption of cheese is associated with a reduction in the number of sperm in smokers.</td>
</tr>
<tr>
<td>Afeiche (46) (2014)</td>
<td>Meat consumption and reproductive parameters in young men</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>189men - USA</td>
<td>There was a negative correlation between the consumption of processed meat and the total number of sperm and semen volume.</td>
</tr>
<tr>
<td>Afeiche (47) (2014)</td>
<td>Relationship between consumed processed meat and fish with semen quality indices</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>155males - USA</td>
<td>Processed meat was inversely related to sperm morphology and fish consumption was associated with more sperm count and normal morphology.</td>
</tr>
<tr>
<td>Ko (48) (2014)</td>
<td>Biologically active additives And fertility of men</td>
<td>Review</td>
<td>Study reviews</td>
<td>USA</td>
<td>The use of antioxidants reduced male infertility.</td>
</tr>
<tr>
<td>Moras-Esteves (49) (2013)</td>
<td>Men's nutritional supplements and fertility</td>
<td>Review</td>
<td>Study reviews</td>
<td>USA</td>
<td>Antioxidants help improvement of sperm parameters.</td>
</tr>
<tr>
<td>Zareba (50) (2013)</td>
<td>Quality of semen and antioxidant use in healthy men</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>189men - USA</td>
<td>Increased sperm motility was observed in men who had more beta-carotene absorption. There was a relationship between vitamin C and sperm concentration.</td>
</tr>
<tr>
<td>La Vignera (51) (2013)</td>
<td>Alcohol and Male Fertility</td>
<td>Review</td>
<td>Laboratory and clinical studies</td>
<td>Italy</td>
<td>Alcohol consumption reduced testosterone and gonadotropins, reduced sperm count, and increased abnormal sperm morphology.</td>
</tr>
<tr>
<td>Jensen (52) (2013)</td>
<td>Relationship of saturated fat with reduced quality of semen</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>701male, Danish</td>
<td>High levels of saturated fat reduced the total number of sperm.</td>
</tr>
<tr>
<td>Braga (53) (2012)</td>
<td>The relationship of food intake in men with intra-cytoplastic sperm injection</td>
<td>Observational</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>250men-brazil</td>
<td>Alcohol consumption had a negative effect on fertility. Red meat had a negative effect on the zygote implantation. Sperm motility was positively affected by cereals and fruits.</td>
</tr>
<tr>
<td>Gaskins (54) (2012)</td>
<td>Food patterns and sperm quality in young men</td>
<td>Cross sectional</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>188people - USA</td>
<td>Cautious food patterns included whole grains, vegetables, fruits and fish (35, 53) was associated with a high percentage of progressive sperm motility.</td>
</tr>
</tbody>
</table>
Fish consumption increases the risk of azoospermia and has an inverse relationship with the fertility of men (37). Eating more red and processed meat, unsaturated fats and antioxidants, fruits and vegetables have important effect on the fertility of women (37). There is an inverse relationship between the consumption of processed red meat with the number of sperm, semen volume (56, 47, 46). Fish consumption increases the sperm and sperm with normal morphology (47).

Western dietary pattern increases azoospermia and has a negative effect on semen parameters and sperm quality (56, 47, 46, 41, 38, 37), but the use of plant-based diet is associated with reduced azoospermia (38). Low intake of fruits and vegetables is associated with an increase in male infertility (37). Eating more beans, grains and fruits also increases sperm motility (53). High intake of saturated fat was associated with low sperm count (52, 43, 41, 37) and there is a negative relationship between cholesterol and the amount of semen volume (43).

Unlike the results of mentioned researches, in a study western diet was not associated with semen parameters, but the (54, 36) was associated with a high percentage of progressive motility of sperm (54). Perhaps the small number of studied patients (188 patients) and its methodology leads to this lack of consistency. In other studies, consumption of beverages sweetened with sugar had an inverse relationship with progressive motility of sperms (44) and consumption of cookies also was associated with the risk of azoospermia (56). Low-fat milk consumption is associated with higher sperm count (53). increased levels of urinary phytoestrogens were associated with abnormal concentrations and sperm motility.

Diet for fertility of women:

A. Polycystic ovary syndrome:

1. the balance between proteins with carbohydrates.
2. foods with low glycemic index.
3. Diet rich in fiber.
4. Eating 5 meals a day.
5. The daily intake of essential fatty acids (omega 3 and 6).
6. Aerobic exercise for 30 minutes five times a week.
7. Consuming organic material.
8. Turkish coffee and caffeine.

Discussion

The role of nutrition in the treatment of male fertility: red and processed meat, unsaturated fats and antioxidants, fruits and vegetables have important effect on the fertility of women (37). There is an inverse relationship between the consumption of processed red meat with the number of sperm, semen volume (56, 47, 46). Fish consumption increases the sperm and sperm with normal morphology (47). Western dietary pattern increases azoospermia and has a negative effect on semen parameters and sperm quality (56, 47, 46, 41, 38, 37), but the use of plant-based diet is associated with reduced azoospermia (38). Low intake of fruits and vegetables is associated with an increase in male infertility (37). Eating more beans, grains and fruits also increases sperm motility (53). High intake of saturated fat was associated with low sperm count (52, 43, 41, 37) and there is a negative relationship between cholesterol and the amount of semen volume (43).

Unlike the results of mentioned researches, in a study western diet was not associated with semen parameters, but the (54, 36) was associated with a high percentage of progressive motility of sperm (54). Perhaps the small number of studied patients (188 patients) and its methodology leads to this lack of consistency. In other studies, consumption of beverages sweetened with sugar had an inverse relationship with progressive motility of sperms (44) and consumption of cookies also was associated with the risk of azoospermia (56). Low-fat milk consumption is associated with higher sperm count (53). increased levels of urinary phytoestrogens were associated with abnormal concentrations and sperm motility.

The role of nutrition in fertility treatment of women: one of the causes of infertility in women is polycystic ovarian syndrome. Overweight infertile women with polycystic ovary syndrome, a diet low in whole grains, fiber and iron (26) and a high intake of sugar, low amount of legumes and vegetables (59) and low consumption of starch and dairy products were successful in the treatment of their obesity (20). Weight loss is also effective in improving poly cystic ovarian syndrome (19), so that the average weight loss leads to improvement in 50% of treated patients (34). German women with PCOS receiving vitamin D, their endometrial thickness was increased. Vitamin D increased ovarian reserve in the late reproductive age (23). Rajaeieh et al in their study found that there is no relationship between milk consumption and the risk of polycystic ovarian syndrome (28), but other results suggest that consumption of dairy products is associated with a higher chance of live birth (18), the reason for this paradox may be because of the dairy products (low-fat and fatty) which is not included in

Table 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention</th>
<th>Design</th>
<th>Sample Size</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xia (55) (2012)</td>
<td>The association of urinary phytoestrogens with male idiopathic infertility</td>
<td>Case-control</td>
<td>Semen Test and Questionnaire</td>
<td>537 men-Taiwan</td>
</tr>
<tr>
<td>Eslamian (56) (2012)</td>
<td>Nutrition and azoospermia without cause</td>
<td>Case-control</td>
<td>Semen Test and Oral Frequency Questionnaire</td>
<td>241 men - Iran</td>
</tr>
</tbody>
</table>

The highest risk of azoospermia was due to the consumption of processed meat and sweets.

Discussion

The role of nutrition in the treatment of male fertility: red and processed meat, unsaturated fats and antioxidants, fruits and vegetables have important effect on the fertility of women (37). There is an inverse relationship between the consumption of processed red meat with the number of sperm, semen volume (56, 47, 46). Fish consumption increases the sperm and sperm with normal morphology (47). Western dietary pattern increases azoospermia and has a negative effect on semen parameters and sperm quality (56, 47, 46, 41, 38, 37), but the use of plant-based diet is associated with reduced azoospermia (38). Low intake of fruits and vegetables is associated with an increase in male infertility (37). Eating more beans, grains and fruits also increases sperm motility (53). High intake of saturated fat was associated with low sperm count (52, 43, 41, 37) and there is a negative relationship between cholesterol and the amount of semen volume (43).

Unlike the results of mentioned researches, in a study western diet was not associated with semen parameters, but the (54, 36) was associated with a high percentage of progressive motility of sperm (54). Perhaps the small number of studied patients (188 patients) and its methodology leads to this lack of consistency. In other studies, consumption of beverages sweetened with sugar had an inverse relationship with progressive motility of sperms (44) and consumption of cookies also was associated with the risk of azoospermia (56). Low-fat milk consumption is associated with higher sperm count (53). Increased levels of urinary phytoestrogens were associated with abnormal concentrations and sperm motility.

Diet for fertility of women:

A. Polycystic ovary syndrome:

1. the balance between proteins with carbohydrates.
2. foods with low glycemic index.
3. Diet rich in fiber.
4. Eating 5 meals a day.
5. The daily intake of essential fatty acids (omega 3 and 6).
6. Aerobic exercise for 30 minutes five times a week.
7. Consuming organic material.
8. Turkish coffee and caffeine.

9. Plants that make regular ovulation such as liver oil of fish, licorice, Vitex, Tribulus terrestris, white flowers, natural progesterone cream and cinnamon (57).

B. Diet for the treatment of hirsutism and uterine hyperplasia: royal jelly and beeswax (57).

C. Diet for IVF:

1. low-fat proteins.
2. 2.2-fish.
3. Zinc
4. The complex carbohydrates.
5. folic acid (58).

Discussion

The role of nutrition in the treatment of male fertility: red and processed meat, unsaturated fats and antioxidants, fruits and vegetables have important effect on the fertility of women (37). There is an inverse relationship between the consumption of processed red meat with the number of sperm, semen volume (56, 47, 46). Fish consumption increases the sperm and sperm with normal morphology (47). Western dietary pattern increases azoospermia and has a negative effect on semen parameters and sperm quality (56, 47, 46, 41, 38, 37), but the use of plant-based diet is associated with reduced azoospermia (38). Low intake of fruits and vegetables is associated with an increase in male infertility (37). Eating more beans, grains and fruits also increases sperm motility (53). High intake of saturated fat was associated with low sperm count (52, 43, 41, 37) and there is a negative relationship between cholesterol and the amount of semen volume (43).

Unlike the results of mentioned researches, in a study western diet was not associated with semen parameters, but the (54, 36) was associated with a high percentage of progressive motility of sperm (54). Perhaps the small number of studied patients (188 patients) and its methodology leads to this lack of consistency. In other studies, consumption of beverages sweetened with sugar had an inverse relationship with progressive motility of sperms (44) and consumption of cookies also was associated with the risk of azoospermia (56). Low-fat milk consumption is associated with higher sperm count (53). Increased levels of urinary phytoestrogens were associated with abnormal concentrations and sperm motility.

Diet for fertility of women:

A. Polycystic ovary syndrome:

1. the balance between proteins with carbohydrates.
2. foods with low glycemic index.
3. Diet rich in fiber.
4. Eating 5 meals a day.
5. The daily intake of essential fatty acids (omega 3 and 6).
6. Aerobic exercise for 30 minutes five times a week.
7. Consuming organic material.
8. Turkish coffee and caffeine.

9. Plants that make regular ovulation such as liver oil of fish, licorice, Vitex, Tribulus terrestris, white flowers, natural progesterone cream and cinnamon (57).

B. Diet for the treatment of hirsutism and uterine hyperplasia: royal jelly and beeswax (57).

C. Diet for IVF:

1. low-fat proteins.
2. 2.2-fish.
3. Zinc
4. The complex carbohydrates.
5. folic acid (58).
the study. Consumption of antioxidant is one of the most effective foods in the treatment of infertility in women, (31). In one study, vitamin E supplement was associated with shorter time to pregnancy in women over age 30 and women under 35 years with consumption of beta-carotene and vitamin C had a shorter time to pregnancy (24).

Higher levels of folate is in association with implantation and live birth (25). Although various micronutrients and antioxidants have a positive impact on the treatment of infertility (30), but Youssef and colleagues found that taking antioxidants does not increase fertility in women with unexplained infertility (27) which may be due to the consumption of Octatron capsules. Although physical activity and proper diet can improve fertility results but identification of a proper diet is a major achievement in fertility management (10). Hippocrates says: "If any man have proper nutrition and physical activity; has found a safe way to get health," (10).

The results of this study showed that certain foods are recommended to improve fertility in women and men, therefore it is essential that infertile couples use proper diet in addition to the treatment. Limitations of this study was that it is not possible to assess the effects of a food on the fertility of men and women due to simultaneous use of food.

Acknowledgments

Hereby, we would like to thank the research and technology deputy of Shahid Beheshti University of Medical Sciences for and all the collaborators and colleagues who helped us with this research.
References

